Composites “lithium chloride/vermiculite” for adsorption thermal batteries: Giant acceleration of sorption dynamics
Svetlana V. Strelova,
Larisa G. Gordeeva,
Alexandra D. Grekova,
Aleksei N. Salanov and
Yuri I. Aristov
Energy, 2023, vol. 263, issue PB
Abstract:
Adsorption thermal batteries have been proposed for storing heat from renewable and waste energy sources. Composites “salt in porous matrix” based on expanded vermiculite have extraordinary methanol sorption and heat storage capacities. However, their practical implementation is restricted by slow desorption, leading to low battery power. This paper aims to accelerate methanol desorption from a composite LiCl/vermiculite through its modification by an aluminum-oxygen containing additive. First, the dynamics of methanol sorption/desorption is studied for a pristine LiCl/vermiculite to reveal the factors braking sorption. Slow heterogeneous nucleation and sluggish growth of crystalline LiCl are shown to dramatically inhibit the methanol desorption from the pristine LiCl/vermiculite composite. To accelerate the nucleation, the vermiculite is modified by 2.5–8.9 wt% of aluminum-oxygen containing additive. Both pristine and modified sorbents are characterized by XRD, SEM, DSC, and BET techniques. The modification allows a giant acceleration of methanol desorption. The characteristic time corresponding to conversion 0.8 reduces by a factor of 2–12 as compared with the pristine composite. The dynamics acceleration affords fourfold increase in the specific power of the heat storage stage of adsorption thermal batteries employing the new composite. In a broader sense, the proposed approach could help accelerate the sorption of methanol, water, and ammonia on composites based on macroporous matrixes and could be advantageous for various adsorption applications.
Keywords: Adsorption thermal battery; Composite “lithium chloride/expanded vermiculite”; Modification; Aluminum oxide; Methanol sorption dynamics; Specific power (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544222026196
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026196
DOI: 10.1016/j.energy.2022.125733
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().