EconPapers    
Economics at your fingertips  
 

Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator

Xiaobin Zhou, Chao Liu, Jie Zhang, Yinming Fan, Yinian Zhu, Lihao Zhang, Shen Tang, Shengpeng Mo, Hongxiang Zhu and Zongqiang Zhu

Energy, 2023, vol. 270, issue C

Abstract: Biphasic solvents are regarded as promising candidates for CO2 capture but still suffer from the deficiency of inferior regenerability, which negatively affects their energy-saving potential. 2-Amino-2-methyl-1-propanol (AMP)-based absorbents have superior regenerability but poor phase-change performance. In this study, an effective strategy that using tetraethylenepentamine (TEPA) to regulate the phase change behavior of an AMP-pentamethyldiethylenetriamine (PMDETA) aqueous solution was proposed, aiming to develop a novel AMP-PMDETA-TEPA (A-P-T) biphasic solvent with good regenerability and excellent phase separation performance. The A-P-T biphasic solvent could realize a high CO2 loading of 0.73 mol mol−1 and a high desorption efficiency of 75.3%. Its sensible heat requirement significantly decreased to 0.14 GJ·ton−1 CO2, 78.1% less than the monoethanolamine solution. The 13C NMR characterization and quantum chemistry calculations indicated that with the introduction of TEPA, high polar TEPA-associated products were generated, which broke the original assimilation state of the A-P-T system and drove it to undergo phase change. Since the TEPA-associated products had a strong affinity to other CO2-captured products and H2O, they gathered together to form the CO2-rich phase. In contrast, less polar PMDETA showed a relatively weak affinity to the TEPA-associated products and was solely separated from the solution to form the CO2-lean phase.

Keywords: CO2 capture; 2-Amino-2-methyl-1-propanol; Biphasic solvent; Phase change regulation; Sensible heat reduction; Regulatory mechanism (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223003249
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003249

DOI: 10.1016/j.energy.2023.126930

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003249