EconPapers    
Economics at your fingertips  
 

Experimental study of hydrogen catalytic combustion wall temperature distribution characteristics and its effect on the coupling performance of autothermal reformers

Chan Ha, Yi Jiao, Cong Wang, Jiang Qin, Sibo Wang, He Liu, Zekuan Liu and Fafu Guo

Energy, 2023, vol. 271, issue C

Abstract: Catalytic combustion can provide heat for reforming reactions using fuel cell tail gas, which improves the energy utilization efficiency of the system and shortens the reformer start-up time. In order to achieve efficient coupling and integration of reforming and combustion, it is important to study the wall temperature regulation and heat matching of the heat absorption and discharge reactions. To address this issue, this paper proposes an optimization method for the synergistic regulation of parameters and structure, both in terms of key parameters (flow rate, temperature) and reactor structure (catalyst arrangement, flow path arrangement) for temperature field regulation, respectively. By means of experiments and numerical simulations, the following conclusions are obtained. The results show that H2 can be ignited at 25 °C, the optimum inlet temperature is 50 °C, and the hydrogen conversion rate is 90.7%. Furthermore, when the H2/air = 0.2, the reaction rate of hydrogen can reach 98%. The catalyst was arranged on the outlet side of the reactor with a uniform wall temperature and a hydrogen conversion rate of 98.21%. In the coupled mode, the hydrogen content of the product exceeds 70% when catalytic combustion is vertically aligned with catalytic reforming.

Keywords: Hydrogen; Catalytic combustion reaction; Catalytic reforming; Wall temperature uniformity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223004462
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004462

DOI: 10.1016/j.energy.2023.127052

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004462