EconPapers    
Economics at your fingertips  
 

Life cycle assessment and multi-objective optimization for industrial utility systems

Hanxiu Li and Liang Zhao

Energy, 2023, vol. 280, issue C

Abstract: Utility systems, which are energy and CO2 intensive, provide power and heat for the industrial process. Modeling, assessing, and optimization of utility systems can help promote sustainable development. This paper proposed a life cycle assessment-based multi-objective optimization framework to address this issue. First, measures for saving energy and reducing emissions were proposed to improve the utility system. The semi-empirical models of the basic components in the improved utility system are developed using process mechanisms and historical data. Secondly, the theory of life cycle assessment (LCA) is employed to evaluate the environmental impacts comprehensively. The operating cost and environmental impact models of the system are then developed and solved by a weighted multi-objective optimization method. Finally, a case study from an industrial utility system is implemented to verify the effectiveness of the proposed method, and three scenarios with different emission reduction methods are compared. In the scenario with two emission reduction measures, it shows that the maximum reduction of environmental impacts could be 56.59%, while the operating cost increases by 36.17%. The Pareto frontiers of the three scenarios provide several choices to balance the operating cost and environmental impacts.

Keywords: Industrial utility system; Emission reduction; Life cycle assessment; Multi-objective optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016079
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016079

DOI: 10.1016/j.energy.2023.128213

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016079