EconPapers    
Economics at your fingertips  
 

Performance improvement of a double tube heat exchanger using novel electromagnetic vibration (EMV) method in the presence of Al2O3-water and CuO-water nanofluid; An experimental study

Nemat Mashoofi Maleki, Saman Pourahmad, Ramin Haghighi Khoshkhoo and Mohammad Ameri

Energy, 2023, vol. 281, issue C

Abstract: In this research, the novel approach of the electromagnetic vibration (EMV) method was utilized for the first time to increase heat transfer in a double-tube heat exchanger (DTHEX). In this method, a magnetic turbulator (comprising a magnet and an oscillator) was installed inside a central tube that vibrated using an AC magnetic field. The influences of various parameters such as the geometry of the oscillator, magnet position, employing nanofluids, and fluid flow were assessed on the thermal-frictional behavior. The thermal enhancement factor (TEF) was assessed to select the optimal option. The studied options were economically evaluated based on energy efficiency. According to the results, the maximum heat transfer rate could be achieved when the magnet is positioned at 0.374. L from the tube inlet. The highest value observed for overall heat transfer was related to CuO-water 1% nanofluid, which was 277.5% more than simple heat exchanger. Also, the findings showed that heat transfer can be increased up to 13.3 times the energy used and reached to TEF = 3.92, which is a very significant number. Regarding the high potential of the EMV in reaching high thermal performance, it can be utilized as a game changer to save materials, energy, and compaction of the heat exchangers and solar systems.

Keywords: Double tube heat exchanger; Electromagnetic vibration method (EVM); Experimental investigation; Heat transfer; Pressure drop (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223015876
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:281:y:2023:i:c:s0360544223015876

DOI: 10.1016/j.energy.2023.128193

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223015876