Pyrolysis mechanism of β-d-glucopyranose as a model compound of cellulose: A joint experimental and theoretical investigation
Junrui Duan,
Haowei Hu and
Jie Ji
Energy, 2023, vol. 282, issue C
Abstract:
This study aims to reveal the pyrolysis reaction mechanism and product formation pathway of cellulose by combining experimental and theoretical calculation results. First, pyrolysis experiments of glucose, cellobiose, and cellulose were conducted by combined thermogravimetry-Fourier infrared spectroscopy-gas chromatography-mass spectrometry (TG-FTIR-GC-MS). The results show that glucose and cellobiose have two obvious mass loss peaks in their pyrolysis processes and cellulose has only a distinct mass loss peak. In the severe weight loss stage, cellulose forms more H2O, CO2, alkanes, and carbonyl compounds than glucose and cellobiose. Then, β-d-glucopyranose was selected as a model compound of cellulose to carry out density functional theory (DFT) calculations. The formation mechanism of furan derivatives and carbohydrate derivatives was systematically studied. And their competitive relationship was revealed. A reaction network from β-d-glucopyranose to main products was constructed. Based on the concerted reaction mechanism, β-d-glucopyranose is easier to generate furfural, followed by furan, 1,4:3,6-dianhydro-α-d-glucopyranose, and levoglucosenone, and finally 2(5H)-furanone. Based on the H radical attack mechanism, β-d-glucopyranose is easier to form 1-(2-furanyl)-ethanone, followed by 5-methyl-2-furancarboxaldehyde, and finally 2-methyl-furan. Finally, the relationship between the functional groups and the pyrolysis behavior of β-d-glucopyranose was clarified by combining the product distribution detected in experiments and DFT calculations.
Keywords: Cellulose; β-d-glucopyranose; Pyrolysis mechanism; DFT; TG-FTIR-GC-MS (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016390
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223016390
DOI: 10.1016/j.energy.2023.128245
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().