A novel hybrid pyroelectric-Stirling engine power generation system
Moh'd Al-Nimr,
Saud Khashan and
Hashem Al-Oqla
Energy, 2023, vol. 282, issue C
Abstract:
Temperature fluctuations in the thermal regenerator of Stirling Engine SE occur at relatively high frequencies, making them amenable to direct harvesting using Pyroelectric materials. This paper demonstrates the technical feasibility of a novel hybrid Stirling Engine (SE), coupled with inserted pyroelectric generators in its thermal regenerator, to produce extra power through the pyroelectric effect and increase engine performance. Theoretical models have been constructed to analyze the performance of the pyroelectric-Stirling engine (P-SE) system and determine its advantages over conventional SEs. The transient thermal behavior of the pyroelectric regenerator is modeled by subdividing it into multiple lumped sub-regenerators. Replacing the metal regenerator in a conventional SE at 750 K hot chamber temperature with a pyroelectric regenerator increased power production by 2.9%. Furthermore, at 25 Hz fluctuation, 15 mm regenerator length, and regenerator porosity of 0.6, the system efficiency of the hybrid P-SE system increased by 0.5% and 3.5% compared to systems using steel and aluminum regenerators, respectively. Also, the P-SE system operating at 25 Hz yields the highest combined efficiency of 49.8% at the regenerator porosity of 0.6.
Keywords: Pyroelectric; Regenerator; Stirling engine; Hybrid system; Power production (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223023071
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023071
DOI: 10.1016/j.energy.2023.128913
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().