EconPapers    
Economics at your fingertips  
 

Experimental study on the operating characteristic of the desiccant cooling systems with the potential of condensing heat recovery

Shuo Liu, Hyusan Jang and Myoung-Souk Yeo

Energy, 2023, vol. 283, issue C

Abstract: The requirement for extra regeneration heat is a significant issue limiting the energy efficiency of desiccant cooling systems. To avoid the additional energy consumption, this study analyses two systems that use condensing heat to regenerate the desiccant. The experiments for the heat pump-assisted type are executed at different indoor load profiles. A comparative experiment is carried out on a water loop-assisted type. Experimental results show that the heat pump-assisted type obtains a maximum regeneration temperature of 40.4 °C and a minimum supply air humidity ratio of 3.5 g/kg DA at the outdoor temperature below 26 °C. However, the thermal imbalance problem leads to uncontrollable indoor temperatures under 50 W/m2 load conditions. The proposed operation mode automatic switching control can improve indoor temperature by switching the system between dehumidification and cooling modes. Compared to the heat pump-assisted type, the water loop-assisted type has the same dehumidification capacity and a more stable indoor thermal environment control using high temperature chilled water above 14 °C and reduce the total primary cooling energy consumption by 58%. This study analyses the feasibility of recovering condensing heat from the perspective of thermal energy analysis, and expands the research on desiccant cooling systems without extra regeneration heat sources.

Keywords: Indoor thermal environment; Desiccant cooling; Thermal imbalance; Condensing heat recovery; Primary energy matching (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223025070
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025070

DOI: 10.1016/j.energy.2023.129113

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025070