EconPapers    
Economics at your fingertips  
 

Efficient coordination of top-down and bottom-up models for energy system design: An algorithmic approach

Paolo Pisciella, E. Ruben van Beesten and Asgeir Tomasgard

Energy, 2023, vol. 284, issue C

Abstract: To account for endogeneity effects in, e.g., energy demand, modern bottom-up energy system models are often linked to a top-down model describing the macroeconomic system. Solving such linked models involves iteratively passing solutions from one model to the other and vice versa until convergence is reached, which can be computationally demanding. This paper proposes a coordination algorithm that speeds up convergence for the linkage of the two models in case the bottom-up model is a linear program and the top-down model is a mixed-complementarity problem. The coordination algorithm uses duality theory to select optimal bases from previous iterations to predict the solution of the bottom-up model. If the predicted solution is correct, which is shown to be equivalent to the predicted solution vector being non-negative, the bottom-up problem need not be solved in that iteration, resulting in a time gain. Numerical experiments on an energy system design problem illustrate that our coordination algorithm correctly predicts the bottom-up solution in most iterations, resulting in a significant reduction in overall computation time.

Keywords: Model linking; Coordination algorithm; Energy system modeling; Economic modeling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223027147
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223027147

DOI: 10.1016/j.energy.2023.129320

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223027147