EconPapers    
Economics at your fingertips  
 

Multiple synergistic roles of Zr modification on ZSM-5 in performant and stable catalyst for ethanol conversion to propene

Wei Xia, Xue Wang, Shuangshuang Li, Zhenhua Jiang, Kun Chen and Dong Liu

Energy, 2024, vol. 288, issue C

Abstract: Bioethanol to propene is a promising avenue to produce propene by non-fossil routes. In this study, the ethanol conversion on metal-modified ZSM-5 catalysts is systematically investigated under catalyst preparation conditions and reaction parameters. Among all metal modified ZSM-5, Zr modification significantly improves the propene selectivity and catalyst durability. On the Zr/ZSM-5 catalyst (Zr/Al molar ratio is 0.4, reaction temperature 500 °C, and contact time 0.005 g⋅min/mL), the maximum yield of propene reaches up to 32.5 %, which can be maintained above 20.0 % within 20 h. Zr modification changes the acidity and electronic structure of the active sites, improves the adsorption stability of the reactant ethanol on Zr/ZSM-5, facilitates easier desorption of the product propene, benefiting propene production. Moreover, Zr modification is found to increase the activation energy of the ethene protonation, inhibit the ethene dimerization reaction, further inhibits the carbon deposition, and extends the lifetime of ZSM-5. In addition to its synergistic and effective role in the conversion of ethanol to propene, the Zr modified catalyst also exhibits high selectivity and stability in the conversion of bioethanol. According to above significant characteristics, Zr modified ZSM-5 will emerge as a promising catalyst for the conversion of bioethanol to propene.

Keywords: HZSM-5; Ethanol; Propene; Zirconium; Density functional theory; Protonation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223033042
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033042

DOI: 10.1016/j.energy.2023.129910

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033042