EconPapers    
Economics at your fingertips  
 

Process analysis using the concept of intrinsic and extrinsic exergy losses

Hsuan Chang and Shang-Chih Chuang

Energy, 2003, vol. 28, issue 12, 1203-1228

Abstract: This paper introduces a two-level idealization concept and decomposes the exergy losses of processing operations into the intrinsic part and the extrinsic part. The first level idealization is the reversible operation and the second level idealization is the thermodynamic equilibrium operation. The exergy losses arising from the deviations from the first level idealization only, caused by configuration constraints, are defined as the intrinsic exergy losses. The extra exergy losses which arise from further deviations from the second level idealization, caused by transport rate limitations, are defined as the extrinsic exergy losses. Demonstrated by several example cases of different complex levels, the analysis results can pinpoint what and where to focus on for improvements: (1) design configurations or transport rate limitations, and (2) the specific locations within the operations or processes. As an example, for a de-ethanizer, the improvement measures on configuration-related and transport rate-related design conditions result in a 11.42% reduction of overall column intrinsic exergy loss and a 81.74% reduction of total individual stage extrinsic exergy loss.

Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544203001166
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:28:y:2003:i:12:p:1203-1228

DOI: 10.1016/S0360-5442(03)00116-6

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:28:y:2003:i:12:p:1203-1228