EconPapers    
Economics at your fingertips  
 

Mixed convection–radiation interaction in a vertical porous channel: Entropy generation

Shohel Mahmud and Roydon Andrew Fraser

Energy, 2003, vol. 28, issue 15, 1557-1577

Abstract: The present work examines analytically the effects of radiation heat transfer on magnetohydrodynamic mixed convection through a vertical channel packed with fluid saturated porous substances. First and Second Laws of thermodynamics are applied to analyze the problem. Special attention is given to entropy generation characteristics and their dependency on the various dimensionless parameters, i.e., Hartmann number (Ha), Plank number (Pl), Richardson number (Ri), group parameter (Br/II), etc. A steady-laminar flow of an incompressible-viscous fluid is assumed flowing through the channel with negligible inertia effect. The fluid is further considered as an optically thin gas and electrically conducting. Governing equations in Cartesian coordinates are solved analytically after reasonable simplifications. Expressions for velocity, temperature, local, and average entropy generation rates are analytically derived and presented graphically.

Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544203001543
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:28:y:2003:i:15:p:1557-1577

DOI: 10.1016/S0360-5442(03)00154-3

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:28:y:2003:i:15:p:1557-1577