Energy, exergy and economic (3E) analysis of solar thermal energy assisted cascade Rankine cycle for reverse osmosis
Milan Raninga,
Anurag Mudgal,
Vivek Patel and
Jatin Patel
Energy, 2024, vol. 293, issue C
Abstract:
A novel cascade Rankine cycle is proposed for treating brackish groundwater using a reverse osmosis system. The cascade RO system is arranged in a loop with a steam Rankine cycle (SRC) at the top and an organic Rankine cycle (ORC) at the bottom to provide high recovery, electricity-free, and scalable options. The system comprises a solar Scheffler dish for heat input, steam turbine and expander for work output, evaporative condenser and ORC condenser for heat rejection, SRC pump, ORC pump and RO high-pressure pump for work input devices, and RO module for water desalination. This study evaluated the thermodynamic design of the system along with energy, exergy, and economic analyses performed by considering eight working fluids such as R245fa, HFO1336mzz(Z), R1225ye(Z), R1224yd(Z), R1233zd(E), R1243zf, R1234yf, and R1234ze(E). The highest overall efficiency was found 14.08% with R1234yf, and the highest RO permeate flow rate was found with R245fa, HFO1336mzz(Z), and R1233zd(E), which require the lowest mass flow rate of ORC working fluid. The highest exergy destruction was found in the solar collector and RO unit. The treated water cost is estimated to be 0.89–0.924 $/m3 of permeate water.
Keywords: Cascade rankine cycle; ORC working fluids; Reverse osmosis; Energy, exergy, and economic analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224003438
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003438
DOI: 10.1016/j.energy.2024.130571
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().