Overtopping performance of a multi-level CROWN wave energy convertor: A numerical study
Zhen Liu and
Guoliang Zhang
Energy, 2024, vol. 294, issue C
Abstract:
The multi-level overtopping device is suitable to the wave climate characteristics in China, including small wave heights and large tidal ranges. In this study, an innovative overtopping device with multi-level conical reservoirs was proposed and studied numerically. A numerical model was established based on the commercial computational fluid dynamic platform ANSYS-Fluent® 16.0, which was carefully verified and validated using experimental results. The numerical model has good accuracy and capability in predicting complicated air-water interactions during overtopping processes. The slope ratio and guide-vane number for the reservoirs were optimized. In addition, the smaller opening mouth width of the lower reservoir benefits the overtopping performance of the upper reservoir. The optimized shape parameters could be employed for practical design of a prototype multi-level overtopping device.
Keywords: Wave energy; Overtopping device; Multi-level reservoirs; Conical ramp; Overtopping discharges; Numerical simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400567X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:294:y:2024:i:c:s036054422400567x
DOI: 10.1016/j.energy.2024.130795
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().