Study of the characteristics of the separated gravity heat pipe of a self-activated PCM wall system
Dawei Xu,
Tian Yan,
Xinhua Xu,
Wei Wu and
Qiuyuan Zhu
Energy, 2024, vol. 298, issue C
Abstract:
Self-activated phase change material (PCM) wall integrated with radiative sky cooling (RSC) is a novel wall system that uses natural energy directly for low-energy buildings to support carbon peaking and neutrality goals. A separated gravity heat pipe (SGHP) is an effective heat transfer component for heat transport from the wall body to the radiative cooler without using mechanical energy. Its heat transfer characteristics affect the thermal performance of the wall system. In this study, a numerical Volume of Fluid (VOF) model of the SGHP is established. The thermal and flow characteristics under the small temperature difference boundary of building scenarios are simulated and analyzed. Results show that the average temperature of the working fluid inside the SGHP in the “steady stage” is about 26.3 °C when the boundary temperature of the evaporation and condensation sections are respectively 28 °C and 20 °C. The heat exchange can reach 356 W/m2 and the flow velocity of the working fluid is about 0.1 m/s. Influences of different evaporation/condensation boundary temperatures on the heat transfer effect are further studied. Compared to increasing the evaporation section temperature, decreasing the condensation section temperature is a better strategy for improving the heat exchange capacity of the SGHP.
Keywords: Low-energy building; Radiative sky cooling; Separated gravity heat pipe; Heat transfer characteristic; Flow characteristic; VOF model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010107
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010107
DOI: 10.1016/j.energy.2024.131237
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().