EconPapers    
Economics at your fingertips  
 

An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework

Yong Li, Liye Wang, Yanbiao Feng, Chenglin Liao and Jue Yang

Energy, 2024, vol. 298, issue C

Abstract: The accurate estimation of state-of-health (SOH) is crucial for ensuring the safe and reliable operation of lithium-ion battery systems. However, the intimate coupling between SOH and state-of-charge (SOC) is often overlooked in existing estimation methods, leading to inaccurate estimates. To address this, we propose a linear parameter-varying (LPV) battery model that captures both gradual capacity degradation and rapid dynamic changes. This model integrates traditional linear models with emerging nonlinear models, providing a comprehensive online SOH estimation framework that effectively separates the effects of SOC in the LPV model structure. The model parameters are identified using a subspace algorithm with accelerated aging data. The proposed method is validated by accelerated aging experiments on two sets of battery samples, one for model development and another for model validation. The experimental data show that the LPV battery model can achieve high SOH estimation accuracy, with an average error of 2.85 % and 5.51 % for SOH, and 0.63 % and 1.20 % for capacity, respectively. The method also shows the advantages of being easy to implement and highly generalizable, making it suitable for different battery types and application scenarios.

Keywords: Lithium-ion battery; State-of-health; Battery model; System identification; Accelerated aging (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010508
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010508

DOI: 10.1016/j.energy.2024.131277

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010508