Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting
Kailing Yang,
Xi Zhang,
Haojia Luo,
Xianping Hou,
Yu Lin,
Jingyu Wu and
Liang Yu
Energy, 2024, vol. 298, issue C
Abstract:
Accurate prediction of energy prices is crucial to the development of energy security and environmental policies in various countries. This paper proposes a novel multi-step prediction hybrid model with genetic algorithm for variational mode decomposition, improved complete ensemble empirical modal decomposition with adaptive noise, bidirectional gated recurrent unit, temporal convolutional network, and multi-layer perceptron (GVMD-ICEEMDAN-BIGRU-TCN-MLP) for predicting carbon and natural gas futures prices. First genetic algorithm (GA) is used to fix the parameters of VMD model, the carbon and natural gas prices are decomposed into subsequences. Then the difference between the original series and the VMD after decomposition is further decomposed into subseries using ICEEMDAN. Next, the highest frequency series is predicted using the MLP model, and other subsequences are predicted using the BIGRU-TCN model. Finally, each predicted value is added linearly to determine the final result of steps 1, 3, and 5 of the entire forecasting process. According to the experimental results, it is shown that the model has lower prediction errors than the comparison model under mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), and modified Diebold-Mariano test (MDM). The good prediction results of the novel hybrid model are demonstrated in multi-step ahead integrated prediction experiments, especially in the experiments with 1-step ahead prediction, as well as in the experiments with varying training ratios.
Keywords: Energy price forecasts; Variational mode decomposition; Machine learning modeling; Multi-step ahead forecasting (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010946
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010946
DOI: 10.1016/j.energy.2024.131321
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().