EconPapers    
Economics at your fingertips  
 

Multicomponent image-based modeling of water flow in heterogeneous wet shale nanopores

Xiangjie Qin, Jinsui Wu, Yuxuan Xia, Han Wang and Jianchao Cai

Energy, 2024, vol. 298, issue C

Abstract: Shale contains abundant multicomponent nanopores with different wettability. Water flow in multicomponent nanoporous systems is still unclear due to the effects of mineral composition, complex pore-throat topology, and heterogeneous wettability. This work develops a contact angle-dependent numerical model for nanoconfined water flow considering heterogeneous wettability, slip effect, and effective viscosity. Water flow in single-component (i.e., clay, organic, inorganic) and multicomponent nanoporous media reconstructed utilizing image fusion techniques is systematically investigated. Results show that the enhancement factor increases exponentially, and the tortuosity increases with increasing contact angle. Water flow is inhibited under strongly hydrophilic conditions, with the enhancement factor linearly negatively correlated with specific surface area. Under hydrophobic conditions, the throat aspect ratio is inversely related to the enhancement factor, which is suppressed in quasi-circular pores. Water flow is restricted in clay pores and enhanced in organic pores due to the differences in pore-throat size and wettability. For the heterogeneous wetting system, the global flow is enhanced compared to no slip and homogeneous wetting conditions. Affected by clay and organic pores with different wettability, the velocity is non-uniformly enhanced, and the effect diminishes as water flows. This work provides a numerical perspective for water flow in heterogeneous wet nanoporous systems.

Keywords: Multicomponent nanoporous system; Water flow; Slip effect; Heterogeneous wet; Contact angle (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422401140X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:298:y:2024:i:c:s036054422401140x

DOI: 10.1016/j.energy.2024.131367

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:298:y:2024:i:c:s036054422401140x