EconPapers    
Economics at your fingertips  
 

The usage of non-aligned multi-circular winding injectors for efficient fuel mixing inside the scramjet engine

Naim Ben Ali, Ali Basem, Pooya Ghodratallah, Pradeep Kumar Singh, Dheyaa J. Jasim, Abbas J. Sultan, Aboulbaba Eladeb, Lioua Kolsi and A.S. El-Shafay

Energy, 2024, vol. 298, issue C

Abstract: The usage of zigzag multi-jet configuration for efficient fuel circulation along the supersonic combustion chamber has been extensively examined in this article. To analyze the flow and fuel jet interactions, computational fluid dynamic is applied as an efficient technique to visualize the flow and fuel jet in the zigzag injection system. Injection via an annular nozzle is compared with coaxial air and fuel jet to find the effective mechanism for well-organized fuel mixing in the combustion chamber of the scramjet engine. The circulation and fuel mixing of the zigzag injection is inspected at a supersonic air stream with Mach = 4. The contour of the Mach value and stream shows that the deflection of the air stream after contact with the core of the upstream jet redirects to the core of the downstream jet and consequently, the fuel mixing is enhanced in the combustion chamber. The usage of an internal air jet expands the performance of fuel mixing of annular jets up to 100 % in the zigzag nozzle arrangement.

Keywords: Fuel injection; Scramjet engine; Supersonic airflow; Shock wave; Zigzag jet (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224011769
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011769

DOI: 10.1016/j.energy.2024.131403

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011769