EconPapers    
Economics at your fingertips  
 

Catalytic co-pyrolysis of poplar tree and polystyrene with HZSM-5 and Fe/HZSM-5 for production of light aromatic hydrocarbons

Shuaihua Guo, Zhiwei Wang, Gaofeng Chen, Yan Chen, Mengge Wu, Mengju Zhang, Zaifeng Li, Shuhua Yang and Tingzhou Lei

Energy, 2024, vol. 298, issue C

Abstract: The catalytic co-pyrolysis of biomass and plastic waste is a highly effective approach for the production of light aromatic hydrocarbons. In this study, catalytic co-pyrolysis experiments were conducted on poplar tree (PT) and polystyrene (PS) using pyrolyzer coupled with gas chromatography/mass spectrometry (Py-GC/MS). The experiments were carried out at a temperature of 550 °C and a mixing ratio of 1:1. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) techniques were employed for the characterization of HZSM-5 and Fe/HZSM-5 catalysts. The findings indicated that the metallic Fe in the HZSM-5 catalyst led to an enhanced production of monocyclic aromatic hydrocarbons (MAH) during the catalytic co-pyrolysis of PT and PS. The proportion of MAH in the products obtained from HZSM-5 and Fe/HZSM-5 catalyst was determined to be 85.84 % and 90.87 %, respectively. In the catalytic co-pyrolysis of biomass and plastic waste, several crucial reactions took place, including deoxidation, olefins aromatization, and Diels-Alder reaction between furans and olefins. In the presence of Fe metal, the HZSM-5 catalyst exhibited enhanced selectivity towards valuable MAH while effectively suppressing the formation of polycyclic aromatic hydrocarbons, resulting in an increase in MAH production to 90.87 %.

Keywords: Catalytic co-pyrolysis; Biomass and plastic; HZSM-5; Fe/HZSM-5; Monocyclic aromatic hydrocarbon (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224012064
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:298:y:2024:i:c:s0360544224012064

DOI: 10.1016/j.energy.2024.131433

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224012064