Photovoltaic-penetrated power distribution networks’ resiliency-oriented day-ahead scheduling equipped with power-to-hydrogen systems: A risk-driven decision framework
Zhi Yuan and
Ji Li
Energy, 2024, vol. 299, issue C
Abstract:
Hydrogen energy and the pioneering power-to-hydrogen (P-2-H) systems have garnered significant interest due to their potential to revolutionize power systems, offering exceptional long-term energy storage capabilities and augmenting the resilience and flexibility of the grid. This paper presents a novel approach for optimizing the day-ahead proactive scheduling of power distribution networks with high solar penetration. The approach utilizes power-to-hydrogen (P-2-H) technology to enhance resiliency and mitigate risks. Uncertainties in solar irradiation, wind speed, electricity demands, and day-ahead market prices are modeled using a scenario-based probabilistic procedure. The optimization problem is formulated as a mixed-integer linear program that minimizes the network's expected normal and resiliency costs while incorporating downside risk constraints. The approach is applied to an IEEE 33-bus power distribution network, demonstrating the effectiveness of P-2-H facilities and risk assessment in improving resiliency during normal and power outage scenarios. Implementing P-2-H facilities in circumstances with and without risk results in a reduction of total operation costs by 40.89% and 40.32%, respectively, according to the simulation findings. Furthermore, the numerical analysis results show that the network's overall operation cost increase for achieving zero risk is only 3.93%, which reduces to 2.32% with the use of P-2-H facilities.
Keywords: Power-to-hydrogen systems; Power distribution networks; Photovoltaic arrays; Resiliency-oriented operation; Risk assessment; Day-ahead scheduling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224008879
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224008879
DOI: 10.1016/j.energy.2024.131115
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().