EconPapers    
Economics at your fingertips  
 

Co-hydrothermal carbonization as a potential method of utilising digested sludge and screenings from wastewater treatment plants towards energy application

Nina Kossińska, Anna Grosser, Marzena Kwapińska, Witold Kwapiński, Heba Ghazal, Hussam Jouhara and Renata Krzyżyńska

Energy, 2024, vol. 299, issue C

Abstract: Anaerobic digestion is one of the most recommended methods for utilising sewage sludge produced by wastewater treatment plants. However, the increasing amount of micropollutants in digested sludge can significantly limit its future utilisation. Recent studies suggests that the hydrothermal carbonization process can be used as a complementary method for sludge management, due to the improved quality of solid products - hydrochar. Moreover, this allows for the possibility of reusing liquid by-products in the anaerobic digestion process for biogas production. However, hydrochar generated from hydrothermal carbonization has a higher concentration of heavy metals and low energy value, which limits its use in agriculture and energy sectors. This study highlights a partial resolution to this problem, by mixing digested sludge with screenings in the co-hydrothermal carbonization process. The findings of this study show improvements in the properties of hydrochar including total solids measured according to ISO, inorganic fractions determined by inductively coupled plasma optical emission spectrometry and higher calorific values measured by the calorimetric bomb. Biomethane potential tests were conducted on liquid by-products. The results showed an average increase in biomethane potential from liquids obtained from co-hydrothermal carbonization compared to liquids from hydrothermal carbonization of digested sludge without screenings in series 1, 2 and 3 - up to 60 %, 40 % and 26 % for three different sludges with initial total solids content of 2.6 %, 12.5 % and 21.5 % w/w.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224012295
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012295

DOI: 10.1016/j.energy.2024.131456

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012295