EconPapers    
Economics at your fingertips  
 

Proposal and performance analysis of a novel hydrogen and power cogeneration system with CO2 capture based on coal supercritical water gasification

Ruiqi Mu, Ming Liu, Yan Huang, Daotong Chong, Zhiping Hu and Junjie Yan

Energy, 2024, vol. 305, issue C

Abstract: To establish a sustainable energy system, it is essential to achieve low-carbon and clean utilization of coal. In this study, a novel hydrogen and power cogeneration system with full CO2 capture that based on coal supercritical water gasification (SCWG) is proposed. Hydrogen is separated from syngas produced by coal SCWG, and the remaining combustible gas is burned to generate power. Moreover, supercritical CO2 cycle is integrated within the cogeneration system to recover the waste heat with high exergy efficiency. Thermodynamic performances, effects of key operation parameters and off-design performances under part-load conditions of the cogeneration system are analyzed. Under the design condition, the cogeneration system produces 20.26 mol kg−1 hydrogen and generates 8746 kJ kg−1 net power, achieving the high energy efficiency and exergy efficiency of 54.77 % and 52.54 %. The exergy efficiency of cogeneration system can be enhanced by optimizing the operation parameters, which is increased by 0.42 %, 4.03 % and 1.10 % with the optimal coal water slurry concentration (17.5 %), higher gasification temperature (750 °C) and higher gas turbine inlet parameters (1500 °C/3 MPa), respectively. The cogeneration system performance decreases with the power load, and the exergy efficiency decreases by 9.61 % when the system power load reduces from 100 % to 30 %.

Keywords: Hydrogen; Cogeneration; CO2 capture; Thermodynamic performance; Off-design analysis; Coal supercritical water gasification (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224021340
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:305:y:2024:i:c:s0360544224021340

DOI: 10.1016/j.energy.2024.132360

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-31
Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224021340