Adaptability analysis of flow and heat transfer multi-scale numerical method for printed circuit heat exchanger
Wangnan Chen,
Qiyuan Ma,
Xinyi Liu,
Yang Cheng,
Qiuwang Wang and
Ting Ma
Energy, 2024, vol. 311, issue C
Abstract:
The printed circuit heat exchanger (PCHE) is a high-efficiency and compact mini-channel heat exchanger. Due to the large number of fine channels, it is difficult to conduct the flow and heat transfer numerical simulation of the entire heat exchanger based on the actual channels, which requires a lot of computational resource and time. In this paper, a simplified multi-scale numerical method with a non-equilibrium porous media model (NOPM) is proposed to study the flow and heat transfer performance of PCHE at high temperature and pressure. The pressure field, velocity field and temperature field of NOPM and actual multi-channel model (MC) under different working conditions are compared to study the adaptability of NOPM for the PCHE. The results indicate that the NOPM can accurately predict the flow and heat transfer performance under PCHE configurations with a large number of channels. However, as the channel number decreases, the relative errors in the temperature and pressure prediction significantly increase due to the increased flow maldistribution. Similarly, the NOPM can well predict the overall temperature distribution of the PCHE solid when the channel number is numerous. This work could support accurate thermal design, and provide accurate temperature field for the thermal stress analysis of PCHE.
Keywords: Printed circuit heat exchanger; Multi-scale method; Non-equilibrium porous media model; Flow maldistribution; Heat transfer (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224031256
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031256
DOI: 10.1016/j.energy.2024.133349
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().