Design of high-performance binary carbonate/hydroxide Ni-based supercapacitors for photo-storage systems
Damin Lee,
Nilanka M. Keppetipola,
Dong Hwan Kim,
Jong Wook Roh,
Ludmila Cojocaru,
Thierry Toupance and
Jeongmin Kim
Energy, 2024, vol. 313, issue C
Abstract:
Silicon solar cells were used to convert solar energy into electrical energy, and a supercapacitor was designed to store this energy. To maximize the surface area of the electrodes, a three-dimensional Ni foam substrate was employed, onto which Ni-based compounds were deposited to enhance the electrochemical performance of the electrodes. Specifically, to address the conductivity reduction problem that arises when using only Ni ions, we introduced transition metal ions such as Mn, Co, Cu, Fe, and Zn to create binary compounds as electrode material. These binary metal compounds provided high electronic conductivity, structural stability, and reversible capacity, thereby optimizing the performance of the supercapacitor. As a result, the optimized NiCo(CO3)(OH)2 electrode demonstrated high capacity and excellent cycle stability, exhibiting an energy density of 35.5 Wh kg−1 and a power density of 2555.6 W kg−1 as an asymmetric supercapacitor device. Furthermore, when this device was combined directly with silicon solar cells, it achieved a storage efficiency of 63 % and an overall efficiency of 5.17 % under an illumination intensity of 10 mW cm−2. These findings suggest the potential for commercializing high-performance self-charging energy storage devices and contribute significantly to the advancement of energy storage technology.
Keywords: Binary-transition metal; Carbonate hydroxide; Hydrothermal method; Faradaic capacitors; Supercapacitors; Photo-storage (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224033711
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s0360544224033711
DOI: 10.1016/j.energy.2024.133593
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().