EconPapers    
Economics at your fingertips  
 

A portable balloon integrated photovoltaic system deployed at low altitude

Tingsheng Zhang, Lingfei Qi, Zutao Zhang and Jinyue Yan

Energy, 2024, vol. 313, issue C

Abstract: This paper proposed a portable balloon-integrated photovoltaic system (BIPVS) deployed at low altitude. The inflatable and deflatable design enhances the proposed system flexibility and mobility, enabling it have a wider range of application scenarios. Case studies were conducted based on cities' data of Vasteras, Vancouver, New York, Shanghai and Hong Kong to evaluate 10,000 BIPVS's annual power generation potential. Mid-to-high latitudes are not suitable for photovoltaic power generation in winter due to snow and ice coverage. Excluding the unsuitable winter months, simulation results show that the average monthly power generation of the BIPVSs amounts to 3.921 GWh, 4.238 GWh, 4.275 GWh, 3.337 GWh, and 3.379 GWh, respectively, during the effective working months within a year, which shows the superior performance of mid-to-high latitudes over their low latitudes. Over the life cycle, the BIPVSs exhibit a cumulative power generation capacity, amounting to 479.492 GWh, 592.18 GWh, 672.105 GWh, 641.155 GWh, and 708.334 GWh, respectively, and their total profits are 79.614 million USD, 37.007 million USD, 75.146 million USD, 12.946 million USD, 107.369 million USD, accompanied by the return on investment of 218.6 %, 101.6 %, 206.3 %, 35.5 %, 294.8 %, respectively. These findings illustrate the significant energy and economic advantages and potential of BIPVS.

Keywords: Solar photovoltaics; Thin-film solar cell; Balloon; Low altitude; Mid-to-high latitudes (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422403500X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s036054422403500x

DOI: 10.1016/j.energy.2024.133722

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403500x