EconPapers    
Economics at your fingertips  
 

Green hydrogen, power, and heat generation by polymer electrolyte membrane electrolyzer and fuel cell powered by a hydrokinetic turbine in low-velocity water canals, a 4E assessment

Omid Rasooli and Masood Ebrahimi

Energy, 2024, vol. 313, issue C

Abstract: Thousands of kilometers of man-made low-velocity water transfer canals around the world can be used as a source of renewable energy for electricity and green hydrogen production. These canals have not been well investigated as an energy source, according to the literature. In the present paper, three technologies of Hydrokinetic Turbine (HKT), Polymer Electrolyte Membrane Fuel Cell, and Electrolyzer (PEM-FC/EL) are utilized to produce electricity, green hydrogen, and heat using these canals. Thermodynamic, economic, and environmental models of the cycle are presented, coded in the Engineering Equation Solver software, and finally validated with published research and manufacturers’ data. Two scenarios were examined, first HKT, PEMEL, and PEMFC were used for electricity generation (power-to-hydrogen-to-power, P2X2P) and second only HKT and PEMEL were used for green hydrogen production (power-to-hydrogen, P2X). While both scenarios are economical, the P2X scenario has a smaller payback period (less than 2 years) and a higher net present value. Practical correlations are derived to determine the rate of hydrogen production, power generation, and emission reduction as a function of water velocity. The round-trip energy and exergy efficiency of the system is 46.17 % and 20.78 % and it reduces carbon dioxide by 0.874 tons/year when water velocity is 1.5 m/s.

Keywords: Green hydrogen; Hydro power; Fuel cell; Electrolyzer; PEM; Low-velocity stream (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422403559X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s036054422403559x

DOI: 10.1016/j.energy.2024.133781

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403559x