EconPapers    
Economics at your fingertips  
 

Thermodynamics-based data-driven combustion modelling for modern spark-ignition engines

Hao Yuan, Harsh Goyal, Reza Islam, Karl Giles, Simeon Howson, Andrew Lewis, Dom Parsons, Stefania Esposito, Sam Akehurst, Peter Jones, Matthew McAllister, Bryn Littlefair, Zhewen Lu and Sipeng Zhu

Energy, 2024, vol. 313, issue C

Abstract: Combustion modelling is complicated, computationally expensive, and crucial for the development of modern spark-ignition (SI) engines. This study introduces a novel data-driven approach to improve the predictability of phenomenological SI engine models. First, a physics-based model is used to generate Mass Fraction Burned (MFB) profiles for 1258 precisely controlled knock-limited combustion experiments. To predict these MFB profiles based on the operating conditions, Artificial Neural Networks (ANN), Multiple Output Support Vector Regression (MOSVR), and Multivariate Gaussian Process (MGP) are then applied. Among these, MGP demonstrates superior performance due to the Gaussian-like distribution of the outputs. Further sensitivity analysis using MGP identifies critical inputs that are not engine specific to develop a thermodynamics-based data-driven model. The model demonstrates high accuracy, uses normalised inputs that are independent of engine geometry, and consistently performs well with small datasets. When applied to a different but similarly sized engine, the model accurately predicts the knock-limited spark timing and captures the MFB profile relatively well, showing strong generalisability. This study not only improves the predictability of engine combustion simulations but also establishes a valuable dataset for further development of data-driven models in different engines.

Keywords: Combustion modelling; Physics-based model; Data-driven model; Spark-ignition engine; Mass fraction burned profile (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224038520
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038520

DOI: 10.1016/j.energy.2024.134074

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038520