Impacts of shadow conditions on solar PV array performance: A full-scale experimental and empirical study
Zihao Song,
Lin Huang,
Qichang Dong,
Guomin Zhang,
Michael Yit Lin Chew,
Sujeeva Setunge and
Long Shi
Energy, 2025, vol. 320, issue C
Abstract:
Shadow is an important hurdle to the power generation efficiency of solar photovoltaic (PV) modules. So far, most previous studies on this aspect have focused on simulation, lacking full-scale experimental study, not to mention the relevant quantitative experimental analysis. Therefore, this study conducted a full-scale outdoor experimental and empirical study on the PV modules under different shadow conditions. Experimental results revealed that the power generation capacity of a single-string PV module decreases by approximately 90 % when a specific solar cell is entirely obstructed. When a cell is shadowed, the short-circuit current drops by 20–25 %. The open-circuit voltage (Voc) drops by 25–30 % when 2/3 of the PV modules are shadowed. The short-circuit current (Isc) has a linear relationship with a smaller shadow less than a solar cell, and the Voc has a linear relationship with a shadow larger than a solar cell. However, the power generation efficiency exhibits a nonlinear relationship with the shadow ratio of the cells when they are subjected to shading. Based on the full-scale experimental tests, this study developed an empirical model, for the first time, to address the relationship between shadow ratio and power generation efficiency, where the power generation efficiency is negatively related to the 3/2 power of the shadow area. The obtained research outcome, together with the empirical model, can pave the way for future large-scale (e.g., global scale) study on addressing the impact of shadow conditions (e.g., bird droppings, dark clouds, gravel, and dust) on the power generation of solar PV systems.
Keywords: Solar PV array; Outdoor test; Partial shading; Empirical model; Power generation efficiency; Environmental conditions (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225008618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008618
DOI: 10.1016/j.energy.2025.135219
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().