EconPapers    
Economics at your fingertips  
 

Model predictive control for ice-storage air conditioning systems with time delay compensation integration

Yan Ding, Long Hu, Qiaochu Wang, Yang Bai, Zhe Tian and Caixia Yang

Energy, 2025, vol. 320, issue C

Abstract: Under the optimized control of building demand response, the ice storage air conditioning system can mitigate peak electrical grid pressure and intermittent renewable energy integration issues. However, due to the complex phase-change characteristics of the ice melting and cooling process, such as nonlinearity and significant inertia, current heat transfer and control models fail to optimize the dynamic response performance of the equipment considering these time-delay properties. In this study, an enthalpy-based model is employed to piecewise linearize the nonlinear phase-change process of the ice storage tank. By utilizing the state-space approach to transform the differential equations into transfer function-based dynamic heat transfer equations, the dynamic delay times for the ice storage system are characterized from inertia and flow delay times. Thereby, a time-delay compensation module is embedded into the Model Predictive Control (MPC). Then a dual-objective operational control strategy considering both cost-effectiveness and dynamic response performance is proposed. The results show that, compared to traditional Proportional-Integral-Derivative (PID) controllers, the MPC strategy respectively reduces the response time during the initial, middle, and final phases of ice melting by 43.3 %, 47.1 %, and 50.5 % and contributes to a reduction of peak electrical load and operating costs by 6.5 % and 8.5 %.

Keywords: Ice storage tank; Heat transfer modeling; Time delay; Model predictive control; Dual-objective optimization; Building demand response (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225009788
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009788

DOI: 10.1016/j.energy.2025.135336

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-25
Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009788