EconPapers    
Economics at your fingertips  
 

Heat resistance analysis and performance improvement of an innovative micro heat pipe PV/T system

Rui Li, Panpan Zhai, Yadong Cao, Jinping Li, Juejie Zhu and Vojislav Novakovic

Energy, 2025, vol. 323, issue C

Abstract: Reducing heat resistance is an effective means to enhance the performance of photovoltaic/thermal (PV/T) systems. However, there is currently a lack of quantitative research on the heat resistance of PV/Ts, especially under outdoor conditions. To address this issue, experiments were conducted on typical days of spring, summer, autumn, winter in Lanzhou (36.1°N/103.9°E, 1517m), a city in northwest China. After determining the optimal tilt angle to be 45°, the heat resistance of each component of the PV/T panel (EVA, TPT, M − HP, heat conductive adhesive, airfoil fin heat exchanger, and the internal wall of the airfoil fin heat exchanger and water) was analyzed. The heat resistance for internal wall of airfoil fin heat exchanger wall and water was the highest among PV/T collector, reaching 49.05 %. In order to reduce this heat resistance, a rectangular heat exchanger was designed. The heat resistance for the internal wall of the rectangular heat exchanger and water was 31.0 % of the heat resistance for the internal wall of the airfoil fin heat exchanger and water. Numerical simulations have shown that the M-HP-PV/T system equipped with a rectangular heat exchanger has an overall efficiency improvement of 12.8 % compared to an airfoil fin heat exchanger.

Keywords: Micro heat pipe PV/T; Heat resistance; Heat exchanger; Thermal collection efficiency; Power conversion efficiency (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225014604
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014604

DOI: 10.1016/j.energy.2025.135818

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-30
Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014604