Design and multi-objective optimization of co-production system of hydrogen and electricity via integration of methanol steam reforming, fuel cell and electrochemical hydrogen pump
Andi Cheng,
Huijun Yi,
Wu Xiao,
Xuehua Ruan,
Xiaobin Jiang and
Gaohong He
Energy, 2025, vol. 324, issue C
Abstract:
In this work, a distributed co-production system of electricity and hydrogen based on electrochemical hydrogen pump (EHP) enhancement was proposed to simultaneously meet user electricity and hydrogen demands. Methanol reformate gas was used to generate power through fuel cells firstly, and then entered EHP to produce pressurized hydrogen, which improving the utilization value of hydrogen, and realizing cascade utilization of hydrogen with different concentrations. Subsequently, a total of 46 datasets were designed based on the Box-Behnken Design, and a response surface surrogate model with 4 responses, 5 factors, and 3 levels was established for the analysis of multi-parameter interaction of the entire system. Furtherly, the multi-objective optimization of system net power, annual hydrogen production, levelized cost of electricity, and hydrogen was carried out using the NSGA-II, which appropriate solution under different application scenarios were selected by LINMAP and TOPSIS methods, which showed that the novel co-production system achieved an levelized cost of electricity and hydrogen are 0.1–0.19 $/kW∙h and 2.2–8.15 $/kgH2, offering a reliable solution for processes enhancing in future distributed energy systems.
Keywords: Co-production system; Electrochemical hydrogen pump; Hydrogen production; Response surface method; Multi-objective optimization (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422501566X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:324:y:2025:i:c:s036054422501566x
DOI: 10.1016/j.energy.2025.135924
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().