Energy efficiency optimization of multistage centrifugal pumps based on blade loading control: Insights into flow instability suppression mechanism
Jiantao Zhao,
Ji Pei,
Zhongsheng Wang,
Benying Zhang,
Wenjie Wang,
Xingcheng Gan and
Giorgio Pavesi
Energy, 2025, vol. 328, issue C
Abstract:
Multistage centrifugal pumps (MSCPs) are critical for high-pressure fluid transport, and their hydraulic efficiency directly affects the energy consumption of energy systems. However, flow instabilities result in substantial energy loss. This study employed blade loading theory, which is closely related to the flow field state, to achieve a parametric blade design. A non-expert-driven optimization framework was constructed by integrating the Metamodel of Optimal Prognosis (MoP) with the technique for order of preference by similarity to the ideal solution based on the entropy weight method (EW-TOPSIS). The optimization objective was to improve the hydraulic efficiency of the pump in the preferred operating range, with a constant pressure-boosting performance as a constraint. The results demonstrated that the efficiency improvement exceeded 2 % across the targeted operating range. Moreover, the MoP exhibited a strong predictive capability, even in multi-parameter scenarios with limited sample data. Further vortex dynamics analysis revealed that loading redistribution reduced the incidence angle, suppressed flow separation on the blade suction surface, and, under high-flow conditions, regulated the dominant vortex transport mechanisms governed by vortex diffusion and dissipation. This research demonstrated that optimizing blade loading serves as an effective passive flow control strategy for MSCPs, enabling significant improvements in energy conservation.
Keywords: Multistage centrifugal pump; Inverse design; Flow diagnosis; Approximate model; CFD simulation; Energy efficiency enhancement (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225022285
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:328:y:2025:i:c:s0360544225022285
DOI: 10.1016/j.energy.2025.136586
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().