Temperature-dependent multi-physical modeling strategy and safety optimization of lithium-ion battery under mechanical abuses
Lingling Hu,
Jinyu Yan,
Mingzhe Zhou and
Heguang Wei
Energy, 2025, vol. 329, issue C
Abstract:
Mechanical abuse risks remain a major concern in the widespread use of lithium-ion batteries (LIBs) in electric transportation. Extreme ambient temperatures in different service environments significantly affect the mechanical properties and failure behaviors of LIBs, posing safety challenges. This study investigates the failure process of lithium-ion pouch batteries under mechanical indentation leading to internal short circuit (ISC) at both low and high temperatures using a coupled mechanical-electrical-thermal model. By incorporating a temperature-dependent, strain-based failure criterion for the separator and heat generation models, the proposed framework accurately reproduces two experimentally observed failure behaviors across different temperatures. At low temperatures, electrical failure is characterized by minor voltage drops and limited heat generation due to localized separator cracking. In contrast, at higher temperatures, extensive internal fractures result in sharp voltage drops and significant heat buildup. The indentation-induced failure mechanisms, integrating mechanical deformation and ISC characteristics, are discussed. Additionally, parametric studies on the jellyroll and shell casing reveal that optimizing the yield strength, elastic modulus, and geometric thickness enhances LIB safety under mechanical indentation. However, a balance must be maintained among failure displacement, load-bearing capacity, and ISC severity at the onset of electrical failure. This modeling strategy offers a multi-physical approach to predicting and optimizing battery safety, providing valuable insights for improving LIB design across diverse environmental conditions.
Keywords: Lithium-ion battery; Multi-physics modeling; Mechanical abuse; Extreme temperature; Optimizations (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225023242
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:329:y:2025:i:c:s0360544225023242
DOI: 10.1016/j.energy.2025.136682
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().