Coupled hydro-aero-turbo dynamics of liquid-tank system for wave energy harvesting: Numerical modelings and scaled prototype tests
Chongwei Zhang,
Xunhao Zhu,
Cheng Zhang,
Luofeng Huang and
Dezhi Ning
Energy, 2025, vol. 330, issue C
Abstract:
The wave-energy-harvesting (WEH) liquid tank with an air-turbine system has distinct advantages in survivability and durability. Its air-turbine effects have long been simplified using orifices, perforated plates, or empirical formulae. This study proposes an integrated numerical model to couple with actual turbine motions. A series of experiments are conducted on a scaled prototype of the WEH liquid tank with an impulse air turbine system. Benchmark experimental data are obtained for validation of the numerical model. The proposed integrated numerical model accurately reproduces the experimental observations. The effects of turbine parameters on the coupled hydro-aero-turbo behavior are systematically investigated. The optimal power take-off damping for the WEH liquid tank is identified. A multi-layered impulse air turbine system (MLATS) is creatively introduced into the liquid-tank system to explore its capability in improving efficiency and reliability. Compared to the single-rotor case, the MLATS with three rotors can increase the averaged power output of the WEH liquid tank by up to 40%. Through a series of failure tests, a three-rotor turbine shows greater reliability than a conventional single-rotor turbine.
Keywords: Wave energy; Liquid sloshing; Wave energy converter; Power take-off; ocean energy (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225023321
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:330:y:2025:i:c:s0360544225023321
DOI: 10.1016/j.energy.2025.136690
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().