EconPapers    
Economics at your fingertips  
 

Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy

Yung-Chung Chang and Wu-Hsing Chen

Energy, 2009, vol. 34, issue 4, 448-456

Abstract: The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply temperatures in chillers, which are used to solve the optimal chiller loading (OCL) problem. A linear input–output model is utilized as a substitute for the sigmoid function, which eliminates the shortcoming of the conventional HNN method. Notably, HNN overcomes the flaw in the Lagrangian method in that the latter cannot be utilized for solving the OCL problem as its power-consumption models include non-convex functions. The chilled water supply temperatures are used as variables to be solved for a decoupled air-conditioning system and solve the problem using the HNN method to overcome the defect in the Lagrangian method. After analysis of the case study and comparison of results using these two methods, we conclude that the HNN method solves the problem of the Lagrangian method, and produces highly accurate results. The HNN method can be applied to the operation of air-conditioning systems.

Keywords: Lagrangian method; Optimal chiller loading; Hopfield neural network; Decoupled system (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544208003265
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:34:y:2009:i:4:p:448-456

DOI: 10.1016/j.energy.2008.12.010

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:34:y:2009:i:4:p:448-456