Development of multifunctional energy systems (MESs)
Ruixian Cai,
Hongguang Jin,
Lin Gao and
Hui Hong
Energy, 2010, vol. 35, issue 11, 4375-4382
Abstract:
By synthetically combining the utilization of different fuels and the co-production of alternative fuels and power, a multifunctional energy system (MES) can present more opportunities to achieve higher efficiency, lower investment, and less environmental impact as compared to traditional energy systems. The principle for the integration of MES is systematically illuminated from the perspective of chemical conversion, energy utilization, and pollutants control. According to system integration characteristics, the development of MES has been classified into three stages, namely, polygeneration systems, MESs combining different fossil fuels, and MESs combining fossil fuel and renewable energy. Three MESs with primary energy savings (PESs) of 14–18% are introduced, which illustrated the potential of MES technology. At the same time, the increment of investment cost had been indicated as the major possible barriers for development of MES technology. On the basis of a comparison with other technical routes, super-critical power plants, and IGCC technology, the role of the MES in the sustainable development of China has been established.
Keywords: Multifunctional energy systems (MESs); Alternative fuels; Polygeneration system (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544208003125
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:11:p:4375-4382
DOI: 10.1016/j.energy.2008.12.016
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().