The future choice of technologies and co-benefits of CO2 emission reduction in Bangladesh power sector
Md. Alam Hossain Mondal,
Manfred Denich and
Paul L.G. Vlek
Energy, 2010, vol. 35, issue 12, 4902-4909
Abstract:
This paper examines the impacts of CO2 emission reduction on future technology selection and energy use in Bangladesh power sector up to 2035 considering the base year 2005. It also examines the implications of CO2 emission reduction targets on energy security of the country. The analysis is based on a long-term energy system model of Bangladesh using the MARKAL framework. The results show that the introduction of the CO2 emission reduction targets directly affect the shift of technologies from high carbon content fossil-based to low carbon content fossil-based as well as clean, renewable energy-based technologies compared to the base scenario. With the CO2 emission reduction target of 10–30%, the cumulative net energy imports during 2005–2035 would be reduced in the range of over 1400PJ to 4898PJ compared to the base scenario emission level. The total primary energy requirement would be reduced in the range of 5.5–15.2% in the CO2 emission reduction targets and the primary energy supply system would be diversified compared to the base scenario.
Keywords: MARKAL model; CO2 emission reduction; Power sector; Bangladesh (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210004731
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:12:p:4902-4909
DOI: 10.1016/j.energy.2010.08.037
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().