Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model
L. Xia,
P. Zhang and
R.Z. Wang
Energy, 2010, vol. 35, issue 5, 2022-2032
Abstract:
Due to the complexity of the fluid flow and heat transfer in packed bed latent thermal energy storage (LTES) systems, many hypotheses were introduced into the previous packed bed models, which consequently influenced the accuracy and authenticity of the numerical calculation. An effective packed bed model was therefore developed, which could investigate the flow field as the fluid flows through the voids of the phase change material (PCM), and at the same time could account for the thermal gradients inside the PCM spheres. The proposed packed bed model was validated experimentally and found to accurately describe the thermo-fluidic phenomena during heat storage and retrieval. The proposed model was then used to do a parametric study on the influence of the arrangement of the PCM spheres and encapsulation of PCM on the heat transfer performance of LTES bed, which was difficult to perform with the previous packed bed models. The results indicated that random packing is more favorable for heat storage and retrieval as compared to special packing; both the material and the thickness of the encapsulation have the apparent effects on the heat transfer performance of the LTES bed.
Keywords: Packed bed; Latent thermal energy storage; Effective packed bed model; Numerical calculation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210000204
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:5:p:2022-2032
DOI: 10.1016/j.energy.2010.01.018
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().