Thermodynamic analysis of a tri-generation system based on micro-gas turbine with a steam ejector refrigeration system
Mohammad Ameri,
Ali Behbahaninia and
Amir Abbas Tanha
Energy, 2010, vol. 35, issue 5, 2203-2209
Abstract:
In the present work, performance of new configuration of Micro-gas turbine cogeneration and tri-generation systems, with a steam ejector refrigeration system and Heat recovery Steam Generator (HRSG) are studied. A micro-gas turbine cycle produces 200 KW power and exhaust gases of this micro-gas turbine are recovered in an HRSG. The main part of saturated steam in HRSG is used through a steam ejector refrigeration system to produce cooling in summer. In winter, this part of saturated steam is used to produce heating. In the first part of this paper, performance evaluation of this system with respect to Energy Utilization Factor (EUF), Fuel Energy Saving Ratio (FESR), thermal efficiency, pinch point temperature difference, net power to evaporator cooling load and power to heat ratio is carried out. It has been shown that by using the present cogeneration system, one can save fuel consumption from about 23% in summer up to 33% in winter in comparison with separate generation of heating, cooling and electricity.
Keywords: Tri-generation; Ejector; Gas turbine; Exergy; Performance parameters (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210000587
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:5:p:2203-2209
DOI: 10.1016/j.energy.2010.02.006
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().