An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level
Q.G. Lin and
G.H. Huang
Energy, 2010, vol. 35, issue 5, 2270-2280
Abstract:
Energy management systems are highly complicated with greenhouse-gas emission reduction issues and a variety of social, economic, political, environmental and technical factors. To address such complexities, municipal energy systems planning models are desired as they can take account of these factors and their interactions within municipal energy management systems. This research is to develop an interval-parameter two-stage stochastic municipal energy systems planning model (ITS-MEM) for supporting decisions of energy systems planning and GHG (greenhouse gases) emission management at a municipal level. ITS-MEM is then applied to a case study. The results indicated that the developed model was capable of supporting municipal energy systems planning and environmental management under uncertainty. Solutions of ITS-MEM would provide an effective linkage between the pre-regulated environmental policies (GHG-emission reduction targets) and the associated economic implications (GHG-emission credit trading).
Keywords: Climate change; Municipal energy systems; GHG emission; Two-stage optimization; Uncertainty (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421000068X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:5:p:2270-2280
DOI: 10.1016/j.energy.2010.01.042
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().