A global transient, one-dimensional, two-phase model for direct methanol fuel cells (DMFCs) – Part II: Analysis of the time-dependent thermal behavior of DMFCs
Purushothama Chippar,
Johan Ko and
Hyunchul Ju
Energy, 2010, vol. 35, issue 5, 2301-2308
Abstract:
A transient-thermal model based on a lumped system is newly developed and implemented in a one-dimensional (1D), two-phase rigorous direct methanol fuel cell (DMFC) model presented in Part I. In this model, the main focus lies on the investigation of the transient thermal behavior of DMFCs and its influence on methanol crossover, cell performance, and efficiency. 1D simulations are carried out and the time-dependent thermal behaviors of DMFCs are analyzed for various methanol-feed concentrations and external heat-transfer conditions. Predicting the close interactions between the evolution of the transient temperature, methanol crossover, cell voltage, and efficiency during DMFC operations, the simulations of transient behavior indicate that the insufficient cooling of DMFCs finally lead to thermal runaway, particularly under high methanol-feed concentrations. Therefore, it is concluded that an efficient cooling system is greatly needed to safeguard DMFC operations and enhance the performance of DMFCs. The present 1D DMFC model is a useful tool for attaining a better understanding of complicated physical phenomena in DMFCs, which assists in optimizing the operating conditions of such cells and material/design parameters.
Keywords: Fuel cells; Methanol crossover; Two-phase mass transport; Thermal runaway; Heat management (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210000733
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:5:p:2301-2308
DOI: 10.1016/j.energy.2010.02.019
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().