EconPapers    
Economics at your fingertips  
 

Novel sorbents of ethanol “salt confined to porous matrix” for adsorptive cooling

Larisa Gordeeva and Yuriy Aristov

Energy, 2010, vol. 35, issue 6, 2703-2708

Abstract: In this paper a new family of sorbents, specifically designed for ethanol sorption, is presented. The composites were synthesized by a dry impregnation of matrices with an aqueous solution of various salts. The ethanol sorption capacity of the composites, under conditions typical for adsorptive air conditioning cycle, has been measured by using an express method based on the Polanyi principle of temperature invariance. Results obtained show that the best novel composites have the ethanol sorption ability which is higher than that of known ethanol sorbents. The composite LiBr(30 wt.%)/SiO2 appears to show the highest sorption capacity and an uptake variation Δw=0.56 and 0.40g/g for air conditioning and ice making cycles, respectively. They are much larger than those obtained for conventional adsorbents. The correspondent cooling coefficient of performance (COP) was estimated to be 0.66 and 0.61, which is comparable with the COP of the best water sorbents.

Keywords: Adsorptive cooling; Ice making; Ethanol; Host matrix; Inorganic salt (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544209001029
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:6:p:2703-2708

DOI: 10.1016/j.energy.2009.04.001

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:35:y:2010:i:6:p:2703-2708