Superior hydrogen storage properties of MgH2–10 wt.% TiC composite
Mei-Qiang Fan,
Shu-sheng Liu,
Yao Zhang,
Jian Zhang,
Li-Xian Sun and
Fen Xu
Energy, 2010, vol. 35, issue 8, 3417-3421
Abstract:
The hydrogen storage performance of MgH2–10 wt.% TiC composite was investigated. The additive TiC nanoparticle led to a pronounced improvement in the de/hydrogenation kinetics of MgH2. The composite could dehydrogenate 6.3 wt.% at 573 K while the milled MgH2 only released 4.9 wt.% of hydrogen at the same condition. The improvement came from that the activation energy of dehydrogenation was decreased from 191.27 kJ mol−1 to 144.62 kJ mol−1 with the TiC additive. The MgH2–10 wt.% TiC composite also absorbed 6.01 wt.% (or 5.1 wt.%) of hydrogen under 1 MPa H2 at 573 K (or 473 K) in 3000 s. Even at 1 MPa H2 and 373 K, it could absorb 4.1 wt.% of hydrogen, but milled MgH2 could not absorb hydrogen at this condition. Additionally, the composite had good cycling stability, and its hydrogen capacity only decreased 3.3% of the first run after 10 de/hydrogenation cycles. The improved hydrogen storage properties were explained to the TiC particles embedded in the MgH2, which provided the pathways for the hydrogen diffusion into the MgH2–10 wt.% TiC composite.
Keywords: Hydrogen storage; Magnesium hydride; TiC nanoparticle (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544210002410
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:35:y:2010:i:8:p:3417-3421
DOI: 10.1016/j.energy.2010.04.034
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().