Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation
Junnian Zheng and
Jerald A. Caton
Energy, 2012, vol. 38, issue 1, 78-84
Abstract:
For diesel engines, low temperature combustion (LTC) with a high level of EGR and late injection becomes attractive because of its potential of simultaneous reduction of nitrogen oxides (NOx) and particulate matter (PM) emissions. However, detailed thermodynamic evaluations including second law analysis of the LTC are few. The current work employed an engine cycle simulation incorporating the second law of thermodynamics to evaluate the energy and exergy distribution of various processes in a low temperature combustion diesel engine. After validation with experimental data at eight operating conditions including four different EGR levels and two different injection timings, the model was used to evaluate the effect of EGR level and injection timing on the first and second law parameters. As EGR was increased, intake temperature and equivalence ratio increased. Results showed that for the case at 0% EGR level with conventional injection timing, about 30% of the fuel exergy was destructed during combustion processes, and as EGR level increased to 45% (intake temperature and equivalence ratio also increased), the combustion destructed exergy decreased to 20% of the fuel exergy. This was largely due to the related combustion temperature increase. For both conventional (−6.5° aTDC) and late (1.5° aTDC) injection timings, the percentage of exergy transfer through flows increases as EGR increases, which is attributed to the retarded ignition by increasing EGR. Other parameters such as energy and exergy transfer due to heat transfer, blow-by, and unburned fuel also were determined as a function of EGR level and injection timing.
Keywords: Thermodynamics; Second law; Engine; Exergy; Low temperature combustion (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544211008590
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:38:y:2012:i:1:p:78-84
DOI: 10.1016/j.energy.2011.12.034
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().