Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units
W.L. Becker,
R.J. Braun,
M. Penev and
M. Melaina
Energy, 2012, vol. 47, issue 1, 99-115
Abstract:
A model for high temperature co-electrolysis (HTCE) of carbon dioxide and water using solid oxide electrolytic cells (SOEC) for syngas production and subsequent conversion to liquid fuels by a Fischer–Tropsch (F–T) process is presented. The SOEC model is guided by experimental data from the literature, and the model is employed to explore the effect of temperature, pressure, and feedstock composition on syngas composition exiting the SOEC. The syngas is converted in a slurry bubble column F–T synthesis reactor in which the model approach of a once-through conversion of carbon monoxide is chosen, and the distribution of hydrocarbon products is determined by the Anderson–Schulz–Flory model. The overall system efficiency for liquid hydrocarbon fuels produced from electrical energy is found to be 54.8% HHV (51.0%-LHV). It is determined that operating the SOEC at low pressure (1.6 bar) versus higher pressure (5 bar) results in an efficiency gain of 2.6%. The economics of the production plant are evaluated for variations in electricity feedstock costs and operating capacity factors. The liquid fuels production costs range from 4.4 $/GGE to 15.0 $/GGE for electricity prices of 0.02 $/kWh to 0.14 $/kWh and a plant capacity factor of 90% to 40%, respectively.
Keywords: Solid oxide co-electrolysis; Fischer–Tropsch; Liquid fuels; Techno-economic analysis; Modeling (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (50)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544212006792
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:47:y:2012:i:1:p:99-115
DOI: 10.1016/j.energy.2012.08.047
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().