Mixtures of rubber tyre and plastic wastes pyrolysis: A kinetic study
Miguel Miranda,
I. Cabrita,
Filomena Pinto and
I. Gulyurtlu
Energy, 2013, vol. 58, issue C, 270-282
Abstract:
The study performed aimed at analysing possible routes for pyrolysis reaction mechanisms of polymeric materials namely RT (rubber tyre) and plastic wastes (PE (polyethylene), PP (polypropylene) and PS (polystyrene)). Consequently, and seeking sustainable transformation of waste streams into valuable chemicals and renewable liquid fuels, mixture of 30% RT, 20% PE, 30% PP and 20% PS was subjected to pyrolysis. Different kinetic models were studied using experimental data. None of the mechanisms found in literature led to a numerical adjustment and different pathways were investigated. Kinetic studies were performed aiming to evaluate direct conversions into new solid, liquid and gaseous products and if parallel reactions and/or reversible elementary steps should be included. Experiments were performed in batch system at different temperatures and reaction times. Kinetic models were evaluated and reaction pathways were proposed. Models reasonably fit experimental data, allow explaining wastes thermal degradation. Kinetic parameters were estimated for all temperatures and dependence of Ea and pre-exponential factor on temperature was evaluated. The rate constant of some reactions exhibited nonlinear temperature dependence on the logarithmic form of Arrhenius law. This fact strongly suggests that temperature has a significant effect on reaction mechanism of pyrolysis of mixtures of rubber tyre and plastic wastes.
Keywords: Kinetic model; Rubber tyre; Plastic; Wastes; Pyrolysis (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544213005318
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:58:y:2013:i:c:p:270-282
DOI: 10.1016/j.energy.2013.06.033
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().