EconPapers    
Economics at your fingertips  
 

Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media

Susan A.M. Vermeer, Theo Araujo, Stefan F. Bernritter and Guda van Noort

International Journal of Research in Marketing, 2019, vol. 36, issue 3, 492-508

Abstract: The increasing volume of firm-related conversations on social media has made it considerably more difficult for marketers to track and analyse electronic word-of-mouth (eWOM) about brands, products or services. Firms often use sentiment analysis to identify relevant eWOM that requires a response to consequently engage in webcare. In this paper, we show that sentiment analysis of any kind might not be ideal for this purpose, because it relies on the questionable assumption that only negative eWOM is response-worthy and it is not able to infer meaning from text. We propose and test an approach based on supervised machine learning that first decides whether eWOM is relevant for the brand to respond, and then—based on a categorization of seven different types of eWOM (e.g., question, complaint)—classifies three customer satisfaction dimensions. Using a dataset of approximately 60,000 Facebook comments and 11,000 tweets about 16 different brands in eight different industries, we test and compare the efficacy of various sentiment analysis, dictionary-based and machine learning techniques to detect relevant eWOM. In doing so, this study identifies response-worthy eWOM based on the content instead of its expressed sentiment. The results indicate that these machine learning techniques achieve considerably higher accuracy in detecting relevant eWOM on social media compared to any kind of sentiment analysis. Moreover, it is shown that industry-specific classifiers can further improve this process and that algorithms are applicable across different social networks.

Keywords: eWOM; Webcare; Social media; Digital marketing strategies; Automated content analysis; Sentiment analysis; Machine learning (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167811619300102
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ijrema:v:36:y:2019:i:3:p:492-508

DOI: 10.1016/j.ijresmar.2019.01.010

Access Statistics for this article

International Journal of Research in Marketing is currently edited by Roland Rust

More articles in International Journal of Research in Marketing from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ijrema:v:36:y:2019:i:3:p:492-508