Finding a representative subset from large-scale documents
Jin Zhang,
Guannan Liu and
Ming Ren
Journal of Informetrics, 2016, vol. 10, issue 3, 762-775
Abstract:
Large-scale information, especially in the form of documents, is potentially useful for decision-making but intensifies the information overload problem. To cope with this problem, this paper proposes a method named RepExtract to extract a representative subset from large-scale documents. The extracted representative subset possesses three desirable features: high coverage of the content of the original document set, low redundancy within the extracted subset, and consistent distribution with the original set. Extensive experiments were conducted on benchmark datasets, demonstrating the superiority of RepExtract over the benchmark methods in terms of the three features above. A user study was also conducted by collecting human evaluations of different methods, and the results indicate that users can gain an understanding of large-scale documents precisely and efficiently through a representative subset extracted by the proposed method.
Keywords: Information extraction method; Coverage; Redundancy; Distribution consistency (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157716300566
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:10:y:2016:i:3:p:762-775
DOI: 10.1016/j.joi.2016.05.003
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().