Hawkes process-based technology impact analysis
Hyun Jin Jang,
Han-Gyun Woo and
Changyong Lee
Journal of Informetrics, 2017, vol. 11, issue 2, 511-529
Abstract:
Patent citation analysis is considered a useful tool for technology impact analysis. However, the outcomes of previous methods do not provide a fair reflection of a technology’s future prospects since they are based on deterministic approaches, assuming that future trends will remain the same as those in the past. As a remedy, we propose a Hawkes process-based patent citation analysis method to assess the future technological impact and uncertainty of a technology in a time period of interest by employing the future citation counts of the relevant patents as a quantitative proxy. For this, we construct a citation interval matrix from the United States Patent and Trademark Office (USPTO) database, and employ a Hawkes process − a special case of path-dependent stochastic processes − as a method for patent citation forecasting. Specifically, the Hawkes process models the idiosyncratic and dynamic behaviours of a technology’s evolution and obsolescence by increasing the likelihood of another subsequent citation by oneself (i.e., self-excitation) and decaying the likelihood back towards the initial level naturally. A case study of the patents about molecular amplification diagnosis technology shows that our method outperforms previous deterministic approaches in terms of accuracy and practicality.
Keywords: Technology impact analysis; Hawkes processes; Future technological impact and uncertainty; Technology evolution and obsolescence; Patent citation forecasting (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1751157716303169
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:infome:v:11:y:2017:i:2:p:511-529
DOI: 10.1016/j.joi.2017.03.007
Access Statistics for this article
Journal of Informetrics is currently edited by Leo Egghe
More articles in Journal of Informetrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().